Feeds:
Posts
Comments

Posts Tagged ‘lithium air batteries’

photo: Better Place

In The New York Times on Monday, I wrote about the challenges of developing electric car batteries that will match the range of gasoline-powered vehicles:

Silicon Valley may be an epicenter of the nascent electric car industry, but don’t expect the battery revolution to mimic the computer revolution, one of I.B.M.’s top energy storage scientists advises.

“Forget Moore’s Law — it’s nothing like that,” said Winfried Wilcke, senior manager for I.B.M.’s Battery 500 project, referring to the maxim put forward by Gordon Moore, an Intel founder, that computer processing power doubles roughly every two years.

“Lithium ion, which clearly is the best battery technology today, is flat, completely flat since 2003,” Mr. Wilcke said last week at a gathering in San Francisco attended by executives from I.B.M. and Better Place, a Silicon Valley electric car infrastructure company.

Mr. Wilcke’s team at the Almaden Research Center of I.B.M. in San Jose, Calif., is trying to develop a new battery technology called lithium air that could allow a car to go 500 miles on a single charge. Most electric cars coming onto the market this year have a range of around 100 miles.

Such batteries theoretically could pack 10 times the energy density of the lithium ion batteries now used in electric cars because they use air drawn in from outside the battery as a reactant. That means lithium-air storage devices weigh less than lithium-ion batteries, a factor that also improves the performance of electric cars.

“I always compare it to climbing Mount Everest,” Mr. Wilcke said. “In the last two months, we just left base camp — meaning that we actually made some pretty significant breakthroughs.”

He declined to give details but said that his team had shown that lithium-air batteries could be recharged, something that had not been done before.

“It will take many years, if ever, before it can be useful,” he said. “It’s a high-high-risk project.”

He illustrated the challenge of building a battery with the energy density of gasoline by recounting that it took 47 seconds to put 13.6 gallons of gas in his car when he stopped to fill up on the way to San Francisco. That’s the equivalent of 36,000 kilowatts of electricity. An electric car would need to pump 6,000 kilowatts to charge its battery.

“The dream that we have today to have exactly the same car charge up in minutes and drive off hundreds of miles cannot happen,” Mr. Wilcke said. “Or at least not for 50 years.”

Mr. Wilcke and Lawrence Seeff, head of global alliances for Better Place, dismissed the idea that the fast-charging stations being tested in California and elsewhere were a solution to the battery conundrum.

Depending on the battery, high-voltage stations can recharge a battery to 80 percent capacity in 20 to 30 minutes rather than in the 8 to 10 hours it takes with a more conventional charging station.

Allan Schurr, I.B.M.’s vice president for strategy, energy and utilities, noted that the cost to drivers of plugging in to a rapid charging station might be prohibitive, given the demands that the devices place on the electric grid.

“It’s physically possible to have a fast-charge mechanism and a fast-charge outlet, but can the grid support it?” Mr. Seeff said. “And what do we define by fast-charging? Is it 20 minutes, 10 minutes, 30 minutes? Because if you have two people waiting to fast-charge, you could be waiting an hour.”

You can read the rest of the story here.

Read Full Post »

ibm-smarter-planet

While the U.S. Department of Energy on Tuesday issued nearly $8 billion in loans to Ford (F), Nissan and Tesla Motors to manufacture electric cars and batteries, IBM unveiled an initiative to develop a next-generation battery technology that would allow those vehicles to travel 400 miles or more on a charge.

Big Blue will investigate the potential of lithium air technology to replace current state-of-the-art lithium ion batteries. Lithium air potentially could pack 10 times the energy density of lithium ion storage devices by drawing oxygen into the batteries to use as a reactant. As a result lithium air batteries would weigh less than lithium ion batteries, C. Spike Narayan, manager of science and technology at IBM’s Almaden Research Center, told Green Wombat.

So besides powering cars, lithium air batteries could store electricity generated from solar power plants and wind farms, turning them into 24/7 energy sources.

But don’t expect to see the super-charged batteries anytime soon.”This is a five-to-10-year project,” says Narayan. “The first phase is to go after the big science problems. Then we’re ready to engage with automotive companies and battery manufacturers.”

The technological hurdles are high and even IBM (IBM), with its expertise in nanotechnology, green chemistry and supercomputing, won’t try to go it alone. It’s seeking partners at research universities and government laboratories to crack the tech challenges, which include developing a membrane that will strip water out of the air before it enters the battery and the development of nano materials to prevent layers of lithium oxide from interfering with chemical reactions.

IBM intends to limit its role in the battery business to R&D. “We have no desire to make batteries,” says Rich Lechner, IBM’s vice president for energy and the environment. “We will license the IP.”

In another sign that climate change and the imminent imposition of carbon caps are creating opportunities for Big Business and rearranging the competitive landscape, IBM also announced “Green Sigma,” an alliance of erstwhile competitors that will offer solutions to companies seeking to shrink their carbon footprint.

Green Sigma includes business software giant SAP (SAP), Cisco (CSCO), Johnson Controls (JCI) and Honeywell (HON). Dave Lebowe, an IBM executive with the Green Sigma program, acknowledged the potential for conflicts of interests among these frenemies but said such problems were outweighed by the upside of bringing together a broad range of expertise to help customers cut their CO2 emissions and save money.

Read Full Post »