Feeds:
Posts
Comments

Archive for the ‘renewable energy’ Category

After a year of stalemate that threatened to strangle the nascent United States solar industry, the U.S. Senate on Tuesday passed energy legislation that extends a key investment tax credit until 2016.

The 30% solar tax credit was part of a package of green energy incentives that includes a one-year extension of the production tax credit crucial to the wind industry and a $2,500-$7,500 tax credit for people who buy plug-in electric vehicles. (That should make General Motors (GM) happy as it prepares to roll out its ever-increasingly expensive Volt plug-in electric hybrid.)

Homeowners also won an extension of a tax credit for installing solar panels and the $2,000 cap on such systems was lifted. Put in a small wind turbine or a geothermal heat pump and you can claim up to a $4,000 and $2,000 tax credit, respectively.

The big winner was the solar industry. Congress’ failure to extend the investment tax credit threatened to scuttle scores of multibillion-dollar solar power plants in the pipeline and undermine mandates that utilities like PG&E (PCG) and Southern California Edison (EIX) obtain a growing percentage of their electricity from renewable sources.

The legislation now returns to the House of Representatives, which earlier passed a similar version of the Senate bill.

Read Full Post »

photo: Todd Woody

Green Wombat’s story in the new issue of Fortune magazine on the solar power plant-fueled boom in demand for wildlife biologists is now online here. The photo above of the blunt-nosed leopard lizard was taken at a state reserve in San Luis Obispo County.

Or you can read the story below.

The hottest tech job in America

Giant solar plants are being built where dozens of protected species live. That’s good news for wildlife biologists.

By Todd Woody, senior editor

(Fortune Magazine) — It looks like a scene from an old episode of The X-Files: As a red-tailed hawk circles overhead and a wild pronghorn sheep grazes in the distance, a dozen people in dark sunglasses move methodically through a vast field of golden barley, eyes fixed to the ground, GPS devices in hand. They’re searching for bodies.

In this case, however, the bodies belong to the endangered blunt-nosed leopard lizard, and the crew moving through the knee-high grain are wildlife biologists hired by Ausra, a Silicon Valley startup that’s building a solar power plant for utility PG&E on this square mile of central California ranchland.

With scores of solar power stations planned for sites in the Southwest, demand for wildlife biologists is hot. They’re needed to look for lizards and other threatened fauna and flora, to draw up habitat-protection plans, and to comply with endangered-species laws to ensure that a desert tortoise or a kit fox won’t be inadvertently squashed by a solar array.

That has engineering giants like URS (URS, Fortune 500) in San Francisco and CH2MHill of Englewood, Colo., scrambling to hire biologists to serve their burgeoning roster of solar clients. “It’s a good time to be a biologist – it’s never been busier in my 15 years in the business,” says Angela Leiba, a senior project manager for URS, which is staffing the $550 million Ausra project. URS has brought onboard 40 biologists since 2007 to keep up with the solar boom. Salaries in the industry, which typically start around $30,000 and run up to about $120,000, have spiked 15% to 20% over the past year.

The work is labor-intensive. “It can take a 30- to 50-person team several weeks to complete just one wildlife survey,” says CH2MHill VP David Stein.

The economics of Big Solar ensure that wildlife biology will be a growth field for years to come. For one thing, there’s the mind-boggling scale of solar power plants. Adjacent to the Ausra project in San Luis Obispo County, for instance, OptiSolar of Hayward, Calif., is building a solar farm for PG&E that will cover 9 1/2 square miles with solar panels. Nearby, SunPower of San Jose will do the same on 3.4 square miles. Every acre must be scoured for signs of “species of special concern” during each phase of each project.

That adds up to a lot of bodies on the ground. URS, for instance, has dispatched 75 biologists to Southern California where Stirling Energy Systems of Phoenix is planting 12,000 solar dishes in the desert. “The biologists are critical to move these projects forward,” notes Stirling COO Bruce Osborn. For one project Stirling had to pay for two years’ worth of wildlife surveys before satisfying regulators.

Just about every solar site is classified as potential habitat for a host of protected species whose homes could be destroyed by a gargantuan power station. (Developers of California solar power plants, for example, have been ordered to capture and move desert tortoises out of harm’s way.) The only way to determine if a site is crawling with critters is to conduct surveys.

While that means a lot of jobs for wildlife biologists, it’s not all red-tailed hawks and pronghorn sheep for these nature boys and girls. The work can get a bit Groundhog Dayish, say, after spending 1,400 hours plodding through the same barley field in 90-degree heat in search of the same blunt-nosed leopard lizard. No wonder then when URS crew boss Theresa Miller asks for volunteers to reconnoiter a decrepit farmhouse for some protected bats on the Ausra site, hands shoot up like schoolchildren offered the chance to take the attendance to the principal’s office.

PG&E (PCG, Fortune 500) renewable-energy executive Hal La Flash worries that universities aren’t cranking out enough workers of all stripes for the green economy. “It could really slow down some of these big solar projects,” he says. Osborn can vouch for that: Biological work on the Stirling project has ground to a halt at times while the company waits for its consultants to finish up surveys on competitors’ sites.

For the young graduate, veteran biologist Thomas Egan wants to say just three words to you: Mohave ground squirrel. The rare desert dweller is so elusive that the only way to detect it on a solar site is to set traps and bag it. “There’s a limited number of people authorized to do trapping for Mohave ground squirrels,” says Egan, a senior ecologist with AMEC Earth & Environmental. “If you can work with the Mohave ground squirrel, demand is intense.”

Read Full Post »

SAN FRANCISCO – Google and General Electric said Wednesday that they will collaborate on developing geothermal power as well as technology to enable plug-in vehicles to return electricity to the grid.

During Google’s (GOOG) annual Zeitgeist conference at its Silicon Valley headquarters, Google CEO Eric Schmidt and GE (GE) chief Jeff Immelt said the two giants also would team up to push for policy changes in Washington to develop smart electricity grids to allow the widespread deployment of renewable energy.

“There’s two fundamental things that have to be done, and which we’re working with Google on,” said Immelt before an audience that included former Vice President Al Gore. “One, there has to be more capacity. The second thing is there has to be a smart grid to allow it to operate more effectively. That’s primarily software. We make the hardware.”

Schmidt quizzed Immelt about the impact of the Wall Street meltdown on green energy. “Will the craziness of last week screw some of this stuff up?” asked Schmidt. “Are we going to get set back for years because of all the shenanigans in the financial industry?”

“People should be concerned but not panicked,” replied Immelt. “The federal government is doing the right thing.”

Gore was not so sanguine, noting that Congress has failed repeatedly to extend crucial investment tax credits for renewable energy. “While Congress is voting on oil drilling and leasing oil shale – which is a move that would be game over for the climate crisis – they’re preparing to filibuster over renewable energy tax credits,” he said.

Google and GE are among scores of Fortune 500 companies that have lobbied Congress to extend the investment tax credit and the production tax credit, which is particularly important to the wind industry. ”

“I’m a lifelong Republican and I believe in free markets but over time we worship false idols,” says Immelt. “Sometimes we think the free market is whatever the price of oil is today. In the end, clean energy is both a technology and a public policy.”

He noted that because the production tax credit allowed the wind industry to scale up, wind-generated electricity now costs about six-to-seven cents a kilowatt hour, down from 15 cents 15 years ago.

“We bought Enron’s wind business for a few million dollars and now it’s worth $7 to 8 billion,” Immelt said. “I’ve made some bad decisions but that wasn’t one of them.”

Google in August invested nearly $11 million in geothermal companies developing so-called enhanced geothermal systems technology to allow the earth’s heat to be tapped nearly anywhere and turned into electricity. On Wednesday, Google and GE said they will work on technology to transform geothermal into a large-scale source of green electricity.

In a statement, the two companies said they will also “explore enabling technologies including software, controls and services that help utilities enhance grid stability and integrate plug-in vehicles and renewable energy into the grid.”

Image: Google

Read Full Post »

T. Boone Pickens and Texas may be the kings of Big Wind but California is catching up, buying gigawatts of green electricity from turbines planted on the windswept flatlands of … Oregon.

On Monday, Southern California Edison became the latest Golden State utility to look north, announcing a 20-year contract to buy a whopping 909 megawatts from Caithness Energy’s Shepherd’s Flat project. The 303-turbine wind farm will span two Oregon counties and 30 square miles when it goes online between 2011 and 2012. PG&E (PCG), meanwhile, signed a deal in July for 240 megawatts of wind power from Horizon Wind Energy’s turbine ranch in the same area. That’s on top of 85 megawatts it agreed to buy last year from PPM Energy (now called Iberdrola Renewables) in a neighboring county that’s part of a turbine tier of counties on Oregon’s northern border.  Earlier this month the Los Angeles Department of Water and Power approved a 72-megawatt contract with Willow Creek Energy for wind power from the same area in Oregon.

So why ship electricity a thousand miles down the West Coast when California already plans to add gigawatts of in-state wind energy?  In a word, transmission.

“The beauty of this particular project is that it is already fully permitted and has transmission already available,”  Stuart Hemphill, Southern California Edison’s (EIX) vice president for renewable and alternative power, told Green Wombat.

“Oregon has a terrific wind resource,” he adds. “It far exceeds that in California.”

In December 2006 the utility signed an agreement to purchase 1,500 megawatts from a giant wind farm to be built by a subsidiary of Australia’s Allco Financial Group in Southern California’s Tehachapi region. But the project is dependent on the construction of new transmission lines – often an environmentally contentious and drawn-out process in California.

“It is expected to go online in 2010,” says Hemphill of the wind farm. “We’re just getting the transmission project up and running. The first three segments have been approved and we’re doing the building now.”

With California’s investor-owned utilities facing a 2010 deadline to obtain 20% of their electricity from renewable sources, expect the Oregon green rush to continue.

Read Full Post »

Oilman turned wind wildcatter T. Boone Pickens met with presumptive Republican presidential nominee  John McCain Friday morning to pump his Pickens Plan to wean the United States from imported oil by shifting electricity production to wind farms and using natural gas to fuel cars and trucks. On Sunday, he’ll hook up with Democrat Barack Obama.

The McCain meeting was “good…very relaxed,” Pickens said Friday during a conference call with Senate Majority Leader Harry Reid to promote next week’s National Clean Energy Summit in Las Vegas. “It was a free flowing discussion. I presented the Pickens Plan to him, and he asked a lot of questions about it. He feels like I’m an energy expert, and he wanted information.”

Pickens began a campaign in July to foster a bipartisan approach to reducing the U.S.’s dependence on imported oil, declaring the “the United States is the Saudi Arabia of wind power.” Pickens is building the nation’s largest wind farm in Texas, and he has an interest in a natural gas transportation company.

Though Nevada Democrat Reid remarked, “Who would have thought that T. Boone Pickens and Sen. Harry Reid would have been in same boat pulling the oars same way,” Pickens made clear he’s no latter-day Al Gore.

“I’d open it all up to drilling – OCS, ANWAR,” he said, referring to the outer continental shelf and the Alaskan National Wildlife Refuge – the third rail of environmental politics.

“The one place I differ with Senator McCain is that I said if you’re going to open the OCS, throw in ANWAR too,” Pickens added.

Gore and other greens have questioned the viability and environmental impact of using natural gas for transportation. Pickens, on the other hand, said he isn’t opposed to electric cars. But, he added, “We can’t make a big cut [in oil imports] in ten years without using natural gas as a transportation fuel.  Use it for trucks and let them do what they want with cars.”

For Reid’s part, he said offshore drilling was still on the table, but he’s pushing for Congress to extend the renewable energy investment tax credit that expires at the end of the year. Scores of wind and solar projects – like the massive photovoltaic power plants that California utility PG&E (PCG) unveiled Thursday with SunPower (SPWR) and OptiSolar – are contingent upon Congress renewing the 30% tax credit.

“We have people standing by willing to invest billions of dollars in renewable energy,” Reid said. “The future is not in a commodity that was discovered in the 18th century. The future is sun, wind, geothermal.”

Read Full Post »

photo: David Lena

In a move that could alter the economics of the global solar industry, California utility PG&E on Thursday announced that it will buy 800 megawatts of electricity produced from two massive photovoltaic power plants to be built in San Luis Obsipo County on the state’s central coast. The 550-megawatt thin-film plant from Bay Area startup OptiSolar and a 250-megawatt PV plant from Silicon Valley’s SunPower dwarf by orders of magnitude the five-to-15 megawatt photovoltaic power stations currently in operation around the world.

Most of the industrial-scale solar plants designed to replace fossil-fuel power use solar thermal technology, meaning they deploy mirrors to heat liquids to produce steam that drives electricity-generating turbines. Photovoltaic power plants essentially take the solar panels found on suburban rooftops and put them on the ground in gigantic arrays. How gigantic? OptiSolar’s Topaz Solar Farm will cover 9 1/2 square miles of ranch land with thin-film panels like the ones in the photo above. Combined, the two solar plants would produce enough electricity to power 239,000 California households, according to PG&E (PCG).

“Obviously this is huge and a bold move,” says Reese Tisdale, a senior analyst who studies the economics of solar power for Emerging Energy Research in Cambridge, Mass. “It’s a pretty big jump in manufacturing capacity and a big opportunity for the PV industry, particularly for thin-film.”

If the power plants are ultimately built – and that’s a big if, given the challenges to get such facilities online – and other utilities follow PG&E’s lead, demand for solar modules could skyrocket. (Thin-film cells like those made by OptiSolar are deposited or printed in layers on glass or flexible metals. They are less efficient at converting sunlight into electricity than standard solar modules but they use far less expensive polysilicon and can be produced much more cheaply.)

First Solar (FSLR), a leading thin-film maker, has an annual manufacturing capacity of around 275 megawatts – which will rise to a gigawatt by the end of 2009. (First Solar is building two small-scale solar power plants for Southern California Edison (EIX) and Sempra (SRE).) SunPower (SPWR) is expected to produce 250 megawatts worth of solar modules this year; its California Valley Solar Ranch project for PG&E alone will be consume 250 megawatts.

“If we were trying to do it this year, it would be all of our production,” says Julie Blunden, SunPower’s vice president for public policy. “SunPower is ramping very quickly. By 2010 our production will be at least 650 megawatts.” SunPower’s solar power plant is set to begin producing electricity in 2010.

The PG&E deal puts OptiSolar in the spotlight. Founded by veterans of the Canadian oil sands industry, the stealth Hayward, Calif., startup has kept its operations under cover, avoiding the media as it quietly set up a manufacturing plant in the East Bay and prepared to break ground on a million-square-foot factory in Sacramento.

OptiSolar CEO Randy Goldstein told Green Wombat that the company will have no problem producing enough solar cells to build Topaz, which is scheduled to go online in 2011, as well as fulfill contracts for some 20 small-scale power plants in Canada.

“Our plan has always been to produce solar energy on a very large scale to make it cost-competitive, even in a market like California,” Goldstein says.

The terms of utility power purchase agreements like the ones OptiSolar and SunPower have signed with PG&E are closely held secrets, but it has long been an open secret that building massive photovoltaic power plants was not economically viable. Last year when I attended the opening of an 11-megawatt PV power station in Portugal – which offers generous solar subsidies – that was built by SunPower’s PowerLight subsidiary, PowerLight’s CEO told me that pursuing such projects in the U.S. was not an attractive proposition due to market incentives and public policy.

So what has changed too make constructing gargantuan PV power plants profitable?

“Lots of things have changed,” says SunPower’s Blunden. “Power prices are going up and public policy is requiring utilities to have a portfolio of renewables.”  And after building some 40 megawatts of power plants in Spain, SunPower has been able to improve its manufacturing processes and cut costs, according to Blunden.  “We could see where the cost reductions were coming down and the benefits of scale,” she says. “We saw there was a way for us to be competitive with other renewables.”

Goldstein says OptiSolar’s business model of owning the supply chain – from building its own machines to make solar cells to constructing, owning and operating power plants – will allow it to reduce costs. “By taking control of the value chain from start to finish, by being vertically integrated and cutting out the middleman,” he says, “we can be competitive not only with other renewable energy but with conventional energy.”

Photovoltaic power plants do have certain advantages over their solar thermal cousins. They don’t need to be built in the desert, thus avoiding the land rush now underway in the Mojave. PV is a solid-state technology and with no moving parts – other than the sun tracking devices used in some plants – they make little noise and are relatively unobtrusive. Most importantly in drought-stricken California, they consume minimal water. And the modular nature of solar panels means that a power plant can start producing electricity in stages rather after the entire facility has been constructed.

“The economies of scale does make PV cost competitive with other renewable energy generating technologies, and wouldn’t be possible without advances that SunPower and OptiSolar have been working on,” says PG&E spokeswoman Jennifer Zerwer. “We take a stringent look at all technologies and we’re not wedded to a particular one.”

With the PV plants, PG&E now has contracts to obtain 24 percent of its electricity from renewable sources.

But contracts are no guarantee the even a watt will be generated. The Topaz and California Valley projects must overcome a number of obstacles, not the least of which is the U.S. Congress’ failure so far to extend a crucial 30 percent investment tax credit for solar projects that expires at the end of the year. SunPower’s Blunden acknowledges the PG&E project is contingent on the tax credit being renewed.

PG&E executive Fong Wan said as much at a press conference Thursday afternoon: “That is a major hurdle. If the investment tax credit is not extended, I expect many of our projects will be delayed.”

Then there’s the question of how welcoming rural San Luis Obispo County residents will be to two massive solar power plants in the neighborhood. Along with a 177-megawatt solar thermal power plant being built by Silicon Valley startup Ausra for PG&E adjacent to the Topaz project, the county has become a solar hot spot. Ausra has run into some community opposition and state officials are growing concerned about the impact of the power plants on protected wildlife.

“The challenge is going to be the magnitude of these projects,” says Tisdale, the energy analyst. “Other projects are already facing opposition from the environmentalists.”

But for solar power companies like OptiSolar the impetus is to get big and get big fast. “I think it’s going to demonstrate that photovoltaics have the ability to be part of the energy mix,” says Goldstein of Topaz. “We can scale up and have a big impact. There’s not going to be a lot of room for niche players in the long run.”

Read Full Post »

photo: Southern California Edison

When Southern California Edison unveiled plans to install 250 megawatts’ worth of solar panels on warehouse roofs back in March, it was hailed as a ground-breaking move. In one fell swoop, the giant utility would cut the cost of photovoltaic power, expand the solar market and kick-start efforts to transform untold acres of sun-baked commercial roof space into mini-power plants.

There’s just one problem: the solar industry is fighting the billion-dollar plan. In briefs filed with the California Public Utilities Commission, solar companies, industry trade groups and consumer advocates argue that allowing a utility to own and operate such massive green megawattage will crowd out competitors who can’t hope to compete with a project financed by Edison’s ratepayers.  (In California, shareholders of investor-owned utilities are guaranteed a rate of return for approved projects, while utility customers bear a portion of the costs in the form of higher rates.)

The five-year plan “would establish SCE as the monopoly developer of commercial-scale distributed solar in its service territory,” wrote Arno Harris, CEO of Recurrent Energy, a San Francisco company that sells solar electricity to commercial customers. “This would irreparably impair the development of a competitive solar industry.”

Southern California Edison (EIX) is the first utility in the United States to propose such a “distributed generation” scheme and the dispute is being watched closely as a test case for the viability of producing renewable electicity from hundreds of millions of square feet of commercial rooftops. Such systems can be plugged directly into existing transmission lines and tend to generate the most solar power when electricity demand spikes – typically on summer afternoons when people crank their air conditioners. Having such green energy on tap would save utilities from having to build expensive and planet-warming fossil fuel-powered “peaker plants” that sit idle except when demand suddenly rises.

Even critics hail Edison’s move as “bold” and “visionary” and no one disputes that in California the development of big rooftop solar has lagged. For instance, the state’s $3.3 billion “million solar roofs” initiative is designed to put smaller-scale solar panels on homes and businesses and provides generous rebates for systems under 1 megawatt. At the other end of the scale, the state’s big utilities have been signing contracts to buy electricity from solar thermal power plants to be built in the desert. Left out of the subsidy game are incentives for the 1-to-2 megawatt arrays well-suited for commercial buildings.

Southern California Edison says it’s filling that gap and will energize the solar industry, not crush it. The utility plans to lease 65 million square feet of commercial rooftop space in the “Inland Empire” region of Southern California for solar arrays that would generate enough electricity to power 162,000 homes.

“SCE’s financial stability and business reputation will increase the probability that 250 MW of solar PV systems will be available to meet the state’s solar rooftop goals over the next five years,” the utility’s attorneys wrote in a brief filed with the utilities commission, which must approve the program. “In so doing, a solar PV program can improve efficiencies … to reduce costs and jump start the competitiveness of solar PV for widespread application on California roofs.”

There’s no doubt the program will be a boon for solar module makers. For instance, thin-film solar cell company First Solar (FSLR) is supplying 33,000 panels for the program’s first project, a 600,000-square-foot roof array in the inland city of Fontana. However, Southern California Edison intends to contract for union labor to install the solar systems and tap its own capital and a rate hike to finance the project. That won’t leave many opportunities for solar installers and financiers like SunPower (SPWR), SunEdison and MMA Renewable Ventures (MMA).

“Even though this program is kind of taking bread out of our own mouth, the demand for solar will keep going up,” says Mark McLanahan, senior vice president of corporate development at MMA Renewable Ventures, a San Francisco firm that finances commercial solar arrays.

“What they have announced is extremely visionary,” McLanahan tells Green Wombat. “It’s game changing and opens up whole new realms of what solar can do. That’s exciting.”  On the other hand, he says, “It’s certainly possible that a young, growing industry that is pretty fragmented could be hurt by this rather than helped.”

A solution advanced by some solar industry critics is for Southern California Edison to open up the entire program to competitive bidding, not just the procurement of solar panels. The utility vehemently opposes the idea, arguing it would work against the economies of scale it says it can bring to the program.

Whether regulators will approve Southern California Edison’s request for a rate hike to pay for the initiative – and at electricity rates that are significantly higher than those set for other solar programs – remains to be seen. The commission’s own ratepayer advocate has questioned whether utility customers will get their money’s worth.

The utilities commission is unlikely to issue a final decision until next year. In the meantime, you can bet the state’s other big utilities – PG&E (PCG) and San Diego Gas & Electric (SRE) – and solar companies will be watching to see whether the sky’s the limit for big rooftop solar or whether a ceiling is about to be placed on the industry’s ambitions.

Read Full Post »

In late 2006, there was something of an exodus from Australia as solar startups decamped for California, frustrated by the long-entrenched conservative government’s tepid support for renewable energy. On one Sydney-to-San Francisco flight alone could be found David Mills, co-founder of solar power plant company Ausra, and Danny Kennedy, chief of solar installer startup Sungevity.

Flash forward 18 months and solar energy companies are beating a path back to Australia. Ausra recently opened up operations Down Under, and last week Silicon Valley solar company SunPower (SPWR) acquired an Australian solar installer called Solar Sales. So is Oz the next hot solar market? By all accounts, the sun-baked environmentally conscious country should be. But the move into the South Pacific is another example of how governments’ ever-morphing renewable energy policies are spurring solar companies to move operations around the globe.

“Obviously there’s a lot of sun in Australia but with the recent change in government there’s a policy environment that could be much more favorable for us,” Peter Aschenbrenner, SunPower’s vice president of corporate strategy, told Green Wombat. “We decided to get in now. It was a little opportunistic as the owners of  Solar Sales were looking to monetize their investment. It follows a model of a previous acquisition in Italy where we got in before the market headed north.”

Last November, a left-leaning Labor government took power in Australia, immediately signed the Kyoto Accord and expanded a national subsidy for rooftop solar panels. Meanwhile, individual Australian states, much like their American counterparts, have enacted their own incentives. Three states – Queensland, South Australia and Victoria – have adopted “feed-in-tariffs” that pay homeowners a premium for electricty produced from solar panels – up to four times the prevailing power rates. Solar homeowners that return  more electricity to the grid than they consume can zero out their power bill or even earn cash from their utility.

But the government of Prime Minister Kevin Rudd has shown the same propensity to alter the rules of the game mid-stream as its predecessor, which wreaked havoc on the wind industry several years ago when it abruptly curtailed a renewable energy target. The Rudd government already has changed course on a national solar subsidy – which provides rebates up to $A8,000 for photovoltaic systems – to make it available only to households earning less than $A100,000 – which qualifies as middle middle-class in Australia’s big cities. Some of the states in turn have limited their subsidies. Victoria – Australia’s second-most populous state – will pay premium solar rates to only 100,000 households.

Given that solar is a game that moves as you play and the relatively small size of the Australian market (population: 20 million) Kennedy for one is cautious about doing business in his homeland.

“I think that it’s potentially a good market in the future,” says Kennedy, a former longtime Greenpeace activist who’s close to Australia’s environment minister and other government officials. “But it’s not living up to its potential because there’s a set of mixed signals from the federal and state governments and no certainty from one year to the next.”

Just how quickly the market can change has been illustrated by Spain, a solar hotspot that has attracted SunPower and other solar power plant builders as well as financiers like GE Energy Financial Services (GE)  with its lucrative premium rates for green electricity. But now the Spanish government is considering cutting its feed-in-tariff and limiting it to an annual 300 megawatts of installed solar, 100 megawatts of which must be rooftop photovoltaic systems. By contrast, some 1,100 megawatts of solar were expected to be installed this year. That would dramatically change the economics for solar energy companies that have moved into the Spanish market.

“This is something we’ve been preparing for,” says Aschenbrenner of SunPower, which has focused on building photovoltaic power plants in Spain. “With our global footprint, we are well placed to move allocation around as these markets wax and wane. In Spain, we’ve been working on building a dealer network to focus on the residential and small commercial markets.”

In Australia, SunPower will need to ramp up its new acquisition since Solar Sales operates on the country’s isolated West Coast while most of the country’s population is concentrated on the eastern seaboard. About half of Solar Sales business has been building off-the-grid power systems for Outback communities that rely on diesel generators for power. Aschenbrenner says he expects that business to continue but the focus will switch to residential solar.

photos: Todd Woody

Read Full Post »

HALF MOON BAY, Calif. – Green Wombat has been at Fortune’s Brainstorm Tech conference the past few days, the highlight of which for me was leading a session on energy with Vint Cerf. Known as the “father of the Internet” for his role in co-creating its underlying technology, Cerf is now a Google (GOOG) vice president and its chief Internet evangelist.

The idea: Brainstorm with 40 high-powered participants – everyone from Idealab’s Bill Gross (chairman of solar power plant company eSolar) to Stan Williams of Hewlett-Packard’s (HPQ) Quantum Systems Labs to venture capitalist Richard Wong of Accel Partners. The task we set out: Devise solutions to Al Gore’s challenge last week for the United States to obtain 100% of its electricity from renewable energy by 2018. Piece of cake.

Sorry, Al, we didn’t come up with a 12-step plan to kick America’s addiction to the black stuff – oil and coal. But the wide-ranging discussion underscored the complexity of the challenge and the fact that a solar-power-plant and wind-farm building boom is but one part of the big fix.

First, said one participant, we must create the “energy Internet.” In other words, a smart transmission grid that can get electricity generated from desert solar power stations and High Plains wind farms to other regions of the country as well as manage “distributed energy” from such things as rooftop solar panels. Another technological challenge that must be overcome: energy storage to capture electricity produced by solar and wind power stations for use when the sun isn’t shining and the wind isn’t blowing.

For many in the room, just as critical is the need to reduce energy demand, increase public awareness and devise the right economic incentives to promote green power and lower electricity consumption. As more than a few participants noted, Americans use more than twice as much electricity per capita as Europeans.

Gross suggests establishing a floor on electricity prices – say 10 cents/kilowatt hour – to allow renewable energy companies to get up and running and achieve economies of scale to compete against coal and natural gas.

Given the techie crowd –  Silicon Valley is just over the hill from Half Moon Bay – some of the more interesting ideas were about how to use software and Web  2.0 tools to change consumer behavior and awareness about energy consumption. For the home there needs to be an energy meter that provides constant feedback on the electricity usage – and the charges incurred –  of individual appliances and gadgets, like that laptop you left plugged in. Your mobile GPS-enabled phone could monitor your driving habits, suggesting ways to consolidate trips, report your fuel efficiency and ping you about your home energy use. Another idea;  Embed carbon footprint data in individual products, so that consumers can scan them with their phones when making purchasing decisions.

(Another provocative idea that Cerf discussed with me before the session: How to re-architect the suburbs when the aging baby boom generation begins to abandon their McMansions in search of housing and a lifestyle less isolated and closer to shops and services.)

Beyond technological innovation, the overriding sentiment was that the president and Congress must show leadership in establishing a national renewable energy policy that commits the resources and sense of urgency of a 21st century Manhattan project.

Coincidentally, the day before the session I moderated a panel at Google on renewable energy sponsored by the California Clean Tech Open, a contest that provides seed capital and services to incubate green startups with promising business plans. This year’s finalists, announced Tuesday, include several companies developing software and services to monitor and cut home and business energy consumption. Judging by the overflow crowd – some 350 people with a line out the door – there’s no shortage of talent in the Valley interested in green tech.

Among those present was Bob Cart, CEO of San Francisco-based Green Volts, which is developing concentrating photovoltaic power plants. Green Volts was a 2006 Clean Tech Open winner and Cart told Green Wombat that less than two years later the company is breaking ground this week on its first power plant, which will generate two megawatts of electricity for utility PG&E (PCG).

Green tech innovation can come from some improbable places. Rock star and home-brew technologist Neil Young closed out Brainstorm Tech on Wednesday by taking the stage for an interview with Time Inc. editor-in-chief John Huey.  Young has been working with a far-flung group of technologists and auto enthusiasts to convert a 1959 Lincoln Continental Mark IV into a 100-mpg, Internet-enabled bio-electric-hybrid. He told Huey the Continental is just one of several green car projects he has under way.

“We have an onboard fuel creation device on an Envoy in Adelaide, Australia,” Young said. That prompted Cerf to ask from the audience, “You mentioned onboard fuel production. This car doesn’t happen to run on piss, does it?”  Young laughed, “It could.”

The songwriter and political provocateur said he was focusing on land yachts  – the Continental stretches to 19.5 feet.  “Americans, a lot of them are big, and they like big cars and long highways.”

Read Full Post »

The idea that green is the new tech was brought home this week in San Francisco when one of the chip industry’s biggest trade shows, SEMICON West, was held in conjunction with a huge solar trade show, Intersolar North America. The geeks and the eco-freaks together under one roof.

Not surprising, really. It has been oft-observed that much of the solar cell industry today is essentially an offshoot of the chip biz; both use  the same basic building blocks – silicon – and common manufacturing processes. Cypress Semiconductor saw that early on and has profited greatly from an acquisition that has eclipsed its chip business, solar module maker SunPower (SPWR).

Almost two years ago, Applied Materials (AMAT), the world’s biggest manufacturer of the machines that make computer chips, jumped into the solar business. It reconfigured  equipment used to produce flat-screen televisions and displays to print thin-film solar cells on the same plates. (Thin-film technologies vary, but essentially solar cells are printed or layered on sheets of glass or flexible materials.)

Applied has sold $3 billion worth of contracts for a dozen solar-cell factories that will be able to crank out 1.5 gigawatts’ worth of modules a year by the end of 2010, said Applied chief technology officer Mark Pinto at a lunch Green Wombat attended on Wednesday at Intersolar. To get an idea of just how hot solar is, consider this: Pinto estimates that in just two years solar will bring in 20 to 30 percent of Applied’s revenues.

“Energy generation has been void of technological development for 50 years and that makes it ripe for change,” said Applied CEO Mike Splinter. “It’s all about engineering and the environment.”

For photovolatics, it’s all about getting the costs per watt down to compete against fossil fuels. Part of that involves improving the efficiency of solar cells, but it’s just as much about reducing manufacturing and installation costs.

To that end, Applied was showing off its latest product (or to be exact, the product made by its machines): Out on a deck at the Metreon center across from the San Francisco convention hall sat a supersized thin-film solar panel measuring 5.7 square meters (7.2 feet by 7.5 feet) that is but an inch or so thick. The panels, which produce about 500 watts each, are designed for solar farms. The large size means that a 10-megawatt solar power plant would require 20,000 Applied panels versus 150,000 conventional-sized panels, cutting overall costs by 17 percent, the company claims. Installation costs fall dramatically as the panels attach to mounting racks with just two screws and plug into the circuit with two wires.

“We think the cost to produce and install is less than the average cost of electricity in California,” said Pinto.

Thin-film panels like the one in the photo above cost less to make than conventional bulky solar modules, but they are much less efficient at converting sunlight into electricity  – around 6 percent versus 20 percent. However, they tend to work well in diffuse sunlight – i.e. foggy San Francisco – and can be integrated into building facades. The panels could also be made semi-transparent and transformed into electricity-generating windows for skycrapers.

Don’t expect Applied’s booming solar business to translate into a lot of green collar jobs in the United States. So far, it has not sold one solar cell factory here. Europe’s solar tax incentives have made it the market for Applied, with Asia set to become another big play in the coming the years. At home, meanwhile, the looming expiration of a crucial investment tax credit for renewable energy is discouraging expansion of the solar economy.

That doesn’t mean that demand has slowed. Southern California Edison (EIX), for instance, this year announced plans to install 250-megawatts of solar arrays on warehouse rooftops in the Southland. (This week it awarded the project’s first contract to thin-film company First Solar (FSLR) to build a 2-megawatt array in the sun-baked city of Fontana.)

But given that there’s only one thin-film factory currently in commercial operation in the United States – First Solar’s – the panels for Edison’s project and others will be coming from overseas. It makes no economic or environmental sense, of course, to ship huge pieces of glass across the ocean to California. (CORRECTION: As a couple of readers have pointed out, Energy Conversion Devices of Michigan operates a thin-film factory in the U.S.) But as Splinter put it about the lack of a coherent U.S. renewable energy policy and the investment tax credit mess, “This is the biggest miss in a long, long time.”

Read Full Post »

« Newer Posts - Older Posts »

Design a site like this with WordPress.com
Get started