Feeds:
Posts
Comments

Archive for the ‘Southern California Edison’ Category

photo: Todd Woody

I wrote this story for Grist, where it first appeared.

When experts try to describe the smart grid, their favorite analogy is the internet.

Just as the internet enabled interactive, two-way communication, the smart grid, we’re told, will deploy sensors and software to digitize a century-old analog electricity distribution system, transforming it into one capable of integrating renewable energy and decentralizing power production.

But while the benefits of the internet are manifest — YouTube, Facebook, Grist! — what will the smart grid do for you and me?

For most people, the most familiar part of the smart grid is the smart meter, those wireless digital devices being installed in homes by the millions so that residents can monitor electricity use in real time rather than through a monthly utility bill that arrives long after the power has been consumed.

Smart meters have been controversial in Northern California, where a number of communities have moved to ban the devices over fears about the potential health effects from their emission of electromagnetic frequencies. (Mobile phones, televisions, and other electronic devices also emit electromagnetic frequencies, and so far there has been no scientific evidence to support the health claims about smart meters.)

A sunnier view of the smart meter as a gateway to a new energy future emerges in Los Angeles, where utility Southern California Edison has built a model home with smart grid technology embedded in everything from the dishwasher to the thermostat.

“It’s much easier to show than tell,” says Mindy McDonald, a Southern California Edison project manager. She is standing outside the “Smart Energy Experience” home that’s been constructed inside the utility’s Customer Technology Application Center, just off the 210 freeway in the inland suburb of Irwindale. “Grappling with the smart grid, it’s much easier to just walk people through,” says McDonald.

The idea is to show people how smart grid technology can cut their electricity bills, reduce the need to build additional fossil fuel plants, and therefore cut greenhouse gas emissions.

A Coda electric car is parked in the stylish suburban ranch’s garage. Solar panels, a solar hot water system, and a wind turbine sit on the roof. LEDs provide the home’s lighting, and every appliance contains communication chips, allowing them to “talk” to each other and to the utility through the smart meter attached to the front of the house.

A video screen in the living room displays the home’s energy management system, and a large flat screen in the kitchen tracks the amount of electricity being consumed and its cost.

When McDonald turns on the washing machine and the air conditioner and then plugs in the car, an “energy speedometer” on the screen shows the cost of electricity rapidly accelerating from 11 cents an hour to $2.81. The display also tells the homeowner how much electricity has been consumed so far in the day and the price per kilowatt-hour.

“It’s really has an impact when you can see how much it’s costing and they realize that maybe they should turn something off,” McDonald says. “Most people don’t pay any attention to what electricity costs until they get their bill and it’s too late to do anything about it.”

The utility so far has installed smart meters in about a fifth of the 4.9 million households and businesses it serves. Beginning in January, those customers can set a monthly electricity budget and receive a text alert, email, or phone call when they’re on track to exceed their limit, according to McDonald.

Another upcoming program, called Save Power Days, will let customers sign up to have their electricity consumption automatically curtailed when demand — and prices — spike, say on a hot summer afternoon. In return, they could save up to $200 a year on their bills.

“Your meter would receive a notification and send it to your programmable communicating thermostat, and it would automatically raise or lower the home’s temperature,” says McDonald. “If you have energy management system, you could set it up any way you want.”

She touches the iPad that controls the house to show how a smart house would react. When the meter signals the energy management system, it adjusts the thermostats, turns off the air conditioner, and switches on ceiling fans. Window blinds lower to block sunlight and keep the house cooler while the lights are dimmed.

“It’s all automatic,” notes McDonald. “If you are home and you don’t want to participate, you can opt out by turning up thermostat temperature, or just push ‘opt out’ on the screen.”

Theodore F. Craver, Jr., chief executive of Edison International, the utility’s parent company, said in an interview that these technologies will change people’s relationship with the energy system.

“Most people think it’s out of sight, out of mind — as long as the light switch goes on and an appliance can be plugged in, that’s it,” he says. “Now the customer will interact with the grid instead of just being passive.”

The question is just how successful utilities will be at persuading people to become active participants in managing their energy consumption.

“Too many of them are saying just giving people more and better information about electricity use, for example, is automatically a huge environmental plus,” Ralph Cavanagh, the co-director of energy programs for the Natural Resources Defense Council, said at the E2 Environmental Entrepreneurs recent conference.

“I’m all for better information but the average electric bill in the average U.S. household is $3 a day,” he continued. “If all you’re talking about is giving people more and better information about their $3 a day, at some point many of them are going to conclude that they have more important things to do with their time.”

Said Jesse Berst, president of the Center for Smart Energy, a research and consulting firm in Redmond, Wash.: “I think it’s a lot easier to teach devices to be smart about energy than to teach people to be smart about energy. I don’t see people clustered around the warmth of the home energy management console.”

They might well start paying more attention when utilities begin introducing what is called “time of day” pricing. Since the smart grid lets utilities monitor electricity consumption in real time, they can start charging consumers higher prices when demand spikes and thus the cost of power rises.

In other words, if you set your air conditioner at arctic temperatures when all your neighbors are cranking up their units on a sweltering day, you’ll pay the price. The flip side is that your smart meter could tell your smart washing machine and dishwasher to delay switching on until power prices drop in the evening.

The smart grid offers Joe and Josephine Ratepayer other benefits as well. For instance, if a storm knocks out a power line, all the 1,500 homes on a typical Southern California Edison circuit served by that line will lose electricity. The utility usually doesn’t find out about such outages until customers call to complain. It can be hours before a repair crew can be dispatched and the problem located and fixed.

As part of its smart grid program, Southern California Edison will be installing sensors on the top of power poles to monitor the circuit. If a line goes down, sensors will reroute power to minimize the number of homes affected by a blackout. The sensors will also notify the utility of the problem and its location and the system will automatically dispatch a repair crew.

That means fewer people sitting in the dark.

Edison International’s Craver says that a grid with this kind of smarts could make a huge difference. “There’s such a high potential for change, and a perhaps pretty radical difference that will start to be created where the grid has a two-way communications capability, and some level of intelligence actually built into the system.”

Read Full Post »

photo: Todd Woody

I wrote this story for Grist, where it first appeared.

If you want a birds-eye view of the future of power, scramble up to the roof of a 562,089-square-foot warehouse in Ontario, a city that sits in the smoggy heart of Southern California’s Inland Empire east of Los Angeles.

On a roof the size of several football fields, workers are busy installing 11,591 solar panels that will generate 2.55 megawatts of electricity. Across the street is another massive warehouse blanketed in photovoltaic panels. Beyond that lie two more warehouses with solar arrays under construction.

Warehouses themselves use relatively little electricity, so owners lease their roofs to utility Southern California Edison, which own the solar arrays and feeds the power they produce into the grid. Over the next five years, the utility will install 250 megawatts worth of photovoltaic panels on big commercial rooftops and buy an additional 250 megawatts from solar developers that will build and operate warehouse arrays. At peak output, those solar arrays will generate as much electricity as a mid-sized fossil-fuel power plant.

“In the Inland Empire you’ve got big buildings and good sun,” Rudy Perez, manager of the utility’s solar rooftop program, said as we stood on the top of the warehouse where solar panels covered the roof as far as the eye could see.

He noted that the number of applications from solar developers to connect rooftop photovoltaic projects to the grid has tripled in the past six months alone.

“It’s one thing when you have one building in an area with a big solar array, another when you have five,” said Perez. “As you get into the higher and higher numbers, that’s where you really need smart grid technology.”

That’s because the rise of renewable energy and electric cars will vastly complicate how the power grid operates.

“We could literally have more change in the system in the next 10 years than we’ve had in the last 100 years,” Theodore F. Craver, Jr., chief executive of the utility’s parent company, Edison International, said in an interview after meeting with executives from French utility giant EDF. The French had come to Los Angeles to learn about Southern California Edison’s smart grid efforts.

In the current, mostly analog grid, the distribution of electricity is fairly straightforward. A utility or another company builds a fossil-fuel-powered plant and flips the switch. For the next 30 years or more, electricity flows into high-voltage transmission lines hour after hour, day after day.

The transmission lines carry the electricity to a distribution system where transformers “step down” the power to a lower voltage and then send it to homes and businesses. And though technological improvements have been made over the decades to the grid, it remains essentially a one-way system. And while storms and accidents can bring down power lines and blackouts can occur when demand soars on a hot day and electricity generation can’t keep up, power flows 24/7 from a natural gas or coal-fired plant.

Now consider the challenges posed by intermittent sources of electricity like solar and wind, not to mention the prospect of thousands of cars plugging into the grid at once to recharge their batteries.

“A rolling cloud can cut electrical output by 80 percent in a just few seconds,” says Perez. “That’s one reason why we have to be smart about where we put [solar].”

And why it’s necessary to build a digitalized grid that deploys software, sensors, and other hardware to monitor and manage electricity distribution and troubleshoot problems.

Instead of relying on dozens of big power plants, the smart grid of the future will increasingly tap thousands or millions of individual rooftop power plants and wind turbines. It will need to collect information about their electricity output and balance the flow of electricity throughout the grid — to ensure that a neighborhood doesn’t go dark because a large cloud is hovering over the solar array atop the local Costco.

“As we start to replace more of the generation with different technologies, we are altering the physics of the system,” said Pedro Pizarro, Southern California Edison’s executive vice president of power operations.

This drizzly October morning is a case in point. A ceiling of gray clouds hangs over the four Ontario warehouses that altogether would be generating some 7.59 megawatts if the sun were shining at peak intensity. So the smart grid also needs to be able to forecast the weather and know, say, that for the next few days electricity production is going to fall in one area while it might rise another, sun-splashed one.

“There’s new technologies that allow for much precise control of the grid,” Perez said. “One of the concerns would be that the intermittency of one of these buildings causes problem for our customers.”

Down the coast at the University of California, San Diego (UCSD), researchers have built what looks like a mirrored hemispherical bowl that scans the skies and snaps two photos a minute to predict when clouds will form over the campus’ one-megawatt worth of solar panels that are installed at seven locations.

“We do a 3-D characterization of all clouds on the horizon every 30 seconds,” Byron Washom, director of strategic energy initiatives at UCSD, said at a solar conference in October. “And then in the next second we note its vector, its speed, its height, its opacity and we characterize it.”

“So we actually begin to forecast what type of cloud is going to intersect where the sun is,” added Washom. “We know where it is at all times in the sky [in relation to] each individual panel on campus.”

He said the scientists’ goal is to be able to use the machines, which cost $12,000 apiece and have a range of one kilometer (0.62 miles), to do hourly forecasts with 90 percent accuracy.

“So a capital investment of less than $1 million could bring this to the Southern California rooftop market if we crack the science,” said Washom, referring to the concentration of warehouses in places such as Ontario.

Another smart grid strategy is to store energy generated by solar arrays in batteries and feed power to the grid when renewable energy production falls or demand spikes.

Washom showed a picture of a device that looks like the back end of a DVD player. The Sanyo lithium ion battery can store 1.5-kilowatt hours of electricity. UCSD plans to stack them like servers in a data center so it can store 1.5 megawatts of electricity produced by campus solar arrays.

In the San Francisco Bay Area, SolarCity, a solar panel installer, and electric carmaker Tesla Motors have received a $1.8 million state grant for a pilot project that will put lithium ion car batteries in half a dozen homes with rooftop solar arrays.

The Sacramento Municipal Utility District (SMUD), meanwhile, plans to install lithium ion batteries in 15 residences as part of its smart solar homes program. The utility will also put two 500-kilowatt batteries near substations to test energy storage on a larger scale.

Such systems are expensive but if the price eventually falls, utilities would be able to use them to release power to the grid when, say, a one of Washom’s cloud-forecasting devices predicts electricity production will fall off. (SMUD also will deploy 70 solar stations to help it forecast weather conditions that could affect electricity production, according to Mark Rawson, the utility’s project manager for advanced, renewable and distributed generation.)

So will the smart grid and increasing production of rooftop solar and other renewable energy spell the end of big centralized power stations and the multibillion-dollar transmission infrastructure? Will the future bring some sort of Ecotopian nirvana where power is put in the hands of the people (or at least on their rooftops)?

Not anytime soon, according to Pizarro of Southern California Edison, barring technological breakthroughs that dramatically reduce the cost of photovoltaic power.

“Right now solar is increasing but it’s not overwhelming the system,” says Pizarro, noting that rooftop photovoltaics remain a tiny percentage of the overall power supply even in places like California, where utilities must obtain a third of their electricity from renewable sources by 2020.

Still, renewable energy “has the potential to reduce the generation from central stations,” Pizarro said. “It’s a question of how much and how soon.”

The other wild card is the price of oil and natural gas, notes Craver, Edison’s chief executive. When the cost of natural gas — the dominant energy source in California — rises, renewable energy becomes more attractive. When natural gas prices plunge, as they have over the past couple of years, installing solar becomes far more expensive in relative terms.

At last month’s solar conference, SMUD’s Rawson said his utility currently relies on photovoltaics, or PV, for less than one percent of its electricity generation. But that will likely change dramatically in the years ahead, he says, as the smart grid evolves to handle the widespread distribution of solar power.

“We’re trying to change PV from something that is tolerated by the utility to something that is controlled by the utility,” he said.

Read Full Post »

photo: PG&E

I wrote this post for Grist, where it first appeared.

Amid the hullabaloo over government-chartered mortgage giants derailing the green financing program known as Property Assessed Clean Energy, or PACE, the march toward distributed generation of renewable energy — that is, generating electricity from decentralized sources such as rooftop solar panels or backyard wind turbinescontinues.

Case in point: The Sacramento Municipal Utility District (SMUD) announced Wednesday that it had awarded contracts to San Francisco’s Recurrent Energy to install 60 megawatts’ worth of solar panels in the region surrounding California’s state capital.

Rather than construct a central solar power station, Recurrent will scatter a dozen five-megawatt installations around two cities in Sacramento County. Each installation will be located near an existing substation, which means that the solar arrays can be plugged directly into the grid without requiring any expensive transmission upgrades.

As I wrote earlier this year in Grist, when SMUD put 100 megawatts of renewable energy contracts out for bid, the allocation sold out within a week. The utility is paying the solar developers a standard premium for their photovoltaic energy — called a feed-in-tariff. But according to calculations done by Vote Solar, a San Francisco non-profit that promotes solar energy, SMUD will pay no more for this clean green solar electricity than it does for fossil-generated power at peak demand times. A 40-percent plunge in solar module costs over the past year has made solar photovoltaic energy increasingly competitive with natural gas, the main fossil fuel used in California to generate electricity.

California’s two big investor-owned utilities, PG&E and Southern California Edison, have launched similar distributed generation programs, which will bring 1,000 megawatts of photovoltaic installations online over the next five years. At peak oputput, that’s the equivalent of a nuclear power plant.

Two weeks ago, PG&E cut the ribbon on the first project to come online as part of its 500-megawatt distributed generation initiative. The two-megawatt Vaca-Dixon Solar Station is built near a utility substation 50 miles north of San Francisco.

It took just nine months to install the fields of solar panels for the Vaca-Dixon station — that’s light speed in a state where the first new big solar thermal power plant in 20 years, BrightSource Energy’s Ivanpah project, has been undergoing licensing for nearly three years.

Solar thermal power plants generate electricity by using mirrors to focus the sun on a liquid-filled boiler. The process creates create steam that drives a conventional turbine which can generate hundreds of megawatts of electricity. Solar thermal projects, by nature, are large centralized facilities, the clean and green versions of a big fossil-fuel power plant.

Photovoltaic farms, on the other hand, generate electricity when sunshine strikes semiconducting materials in a solar cell. If you want to produce more power, you just keep adding solar panels.

While BrightSource hopes to secure a license for its solar thermal project soon, the developer of a hybrid biomass solar trough power plant to be built in California’s Central Valley pulled the plug on the project last month, after spending 18 months and untold millions of dollars in the licensing process before the California Energy Commission.

PG&E has been depending on both those solar thermal projects to supply electricity to help it meet its renewable energy mandates. No wonder then, the utility’s growing enthusiasm for solar panel power. Photovoltaic farms do not have to be approved by California Energy Commission and can be built on already degraded land or close to cities.

And as I reported last month, the developer of another project being built to generate electricity for PG&E, the Alpine SunTower, decided to drop solar thermal technology made by its partner, eSolar, in favor of photovoltaic panels. The official explanation for the switch was that project was being downsized due to transmission constraints and solar panels proved a better fit.

But one has to wonder if economics as much as energy was behind the change. If so, deals like the one SMUD struck could be a recurrent theme.

Read Full Post »

photo: Todd Woody

In The New York Times on Wednesday, I write about California regulators’ preliminary decision to reject requests by two big utilities to install grid-connected fuel cells:

While Google, Wal-Mart and other corporations have embraced fuel cells, California regulators have turned down requests from the state’s two biggest utilities to install the technology.

In a preliminary decision, an administrative law judge with the California Public Utilities Commission found unwarranted an application from Pacific Gas and Electric and Southern California to spend more than $43 million to install fuel cells that would generate six megawatts of electricity.

The technology transforms hydrogen, natural gas or other fuels into electricity through an electrochemical process, emitting fewer or no pollutants, depending on the type of fuel used.

“It is unreasonable to spend three times the price paid to renewable generation for the proposed Fuel Cell Projects, which are nonrenewable and fueled by natural gas,” wrote the administrative law judge, Dorothy J. Duda, in a proposed ruling issued last week. “In addition, the applications do not satisfactorily address how full ratepayer funding of utility-owned fuel cell generation would enhance private market investment and market transformation of the fuel cell industry.”

You can read the rest of the story here.

Read Full Post »

photo: Todd Woody

In a story I wrote with Clifford Krauss in Monday’s New York Times, I look at how the San Francisco Bay Area has is scrambling to prepare for the arrival of mass-market electric cars later this year:

SAN FRANCISCO — If electric cars have any future in the United States, this may be the city where they arrive first.

The San Francisco building code will soon be revised to require that new structures be wired for car chargers. Across the street from City Hall, some drivers are already plugging converted hybrids into a row of charging stations.

In nearby Silicon Valley, companies are ordering workplace charging stations in the belief that their employees will be first in line when electric cars begin arriving in showrooms. And at the headquarters of Pacific Gas and Electric, utility executives are preparing “heat maps” of neighborhoods that they fear may overload the power grid in their exuberance for electric cars.

“There is a huge momentum here,” said Andrew Tang, an executive at P.G.& E.

As automakers prepare to introduce the first mass-market electric cars late this year, it is increasingly evident that the cars will get their most serious tryout in just a handful of places. In cities like San Francisco, Portland, Ore., and San Diego, a combination of green consciousness and enthusiasm for new technology seems to be stirring public interest in the cars.

The first wave of electric car buying is expected to begin around December, when Nissan introduces the Leaf, a five-passenger electric car that will have a range of 100 miles on a fully charged battery and be priced for middle-class families.

Several thousand Leafs made in Japan will be delivered to metropolitan areas in California, Arizona, Washington state, Oregon and Tennessee. Around the same time, General Motors will introduce the Chevrolet Volt, a vehicle able to go 40 miles on electricity before its small gasoline engine kicks in.

“This is the game-changer for our industry,” said Carlos Ghosn, Nissan’s president and chief executive. He predicted that 10 percent of the cars sold would be electric vehicles by 2020.

You can read the rest of the story here.

Read Full Post »

betterplaceplug

photo: Better Place

With electric cars months away from hitting the road, the California Public Utilities Commission has begun the complex task of establishing a regulatory framework for the state’s emerging electric vehicle infrastructure. The biggest fight is likely to be over whether to regulate companies like Better Place, which plans to build an electric car charging network in the state. As I write in The New York Times on Monday:

With electric cars set to hit the mass market next year, a skirmish is breaking out in California over who will control the state’s electric vehicle infrastructure.

The California Public Utilities Commission will write the rules of the electric road and is just starting to grapple with the complex regulatory issues surrounding the integration of battery-powered cars into the state’s electrical grid.

One of the biggest questions is whether to regulate Better Place, Coulomb Technologies and other companies that plan to sell electricity to drivers through a network of battery charging stations.

California’s three big investor-owned utilities have split over the issue.

“The commission should establish its authority to regulate third-party providers of electricity for electric vehicles,” Christopher Warner, an attorney for Pacific Gas & Electric, wrote in a filing with the utilities commission. “Managing the increased electricity consumption and load attributable to electric vehicles in order to avoid adverse impacts on the safety and reliability of the electric grid may be one of the most difficult management challenges that electric utilities will face.”

Southern California Edison, meanwhile, urged the commission to move cautiously, calibrating any regulation to the specific business models of the companies.

San Diego Gas & Electric said the commission does not have the right to regulate companies like Better Place.

You can read the rest of the story here.

Read Full Post »

solarh

Photo: BrightSource Energy

In today’s New York Times, I write about how Harvey Whittemore — one of Nevada’s biggest power brokers and a confident of Senate majority leader Harry Reid — has responded to the housing crash by leasing desert land at his mega-home development to BrightSource Energy for a 960-megawatt solar farm complex.

What to do when building a 159,000-home city in the Nevada desert and the housing market collapses?

Go solar.

The Coyote Springs Land Company this week expanded a deal with BrightSource Energy, a solar power developer based in Oakland, Calif., to carve out 12 square miles of it its 43,000-acre mega-development for solar power plants that would generate up to 960 megawatts of electricity.

Harvey Whittemore, Coyote Springs’s chairman, said his plan always was to include some renewable energy in the massive golfing community under development 50 miles northeast of Las Vegas. But, Mr. Whittemore said, he decided to go bigger as the housing market crashed and solar developers like BrightSource began to sign deals with utilities.

“We’ve always said we’ll adjust the land use plan to the market,” said Mr. Whittemore in an interview. “At the end of the day we have approvals for 159,000 units and we looked at what we could do to reduce the number of units while at same time coming up with a functional business plan that takes advantage of private land.”

Private land is in short supply in Nevada, where the federal government owns about 87 percent of the state. That has forced solar developers like BrightSource – which is under the gun to supply 2,610 megawatts to California utilities — to seek leases on desert property managed by the United States Bureau of Land Management, a years-long process involving extensive environmental review.

By dealing with Mr. Whittemore, BrightSource is sidestepping all of that and acquiring an ally who knows how to get things done in the Silver State.

You can read the rest of the story here.

Read Full Post »

« Newer Posts - Older Posts »